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Abstract
The radiation of relativistic charged particles for quasiperiodic motion in
a transparent medium is considered. For motion of the general kind the
differential probability of the process is obtained. For planar motion the spectral
intensity of the radiation is found. Different cases of radiation in medium-filled
undulators are studied. In particular, the influence of Cherenkov radiation on
the undulator radiation is discussed.

1. Introduction

At the present time such power sources of x-rays as undulators [1] are widely used in various
fields of science. In a number of papers [2–9], with the aim of increase of the energy of emitted
photons, the crystal undulator has been considered. The recent paper [10] contains a rather
complete list of references related to various problems of crystal undulators3.

One of the proposed constructions [12, 13] was created and tested in a positron beam.
Preliminary results of the experiment [14] give an indication on the observation of undulator
radiation. Calculations of the expected intensity for this experiment were based on the
theory [15] of radiation for quasiperiodic motion in vacuum. This theory allows one to perform
the calculation of radiation spectra for motion of the general type and different parameters of
the undulator. In calculations with our experimental conditions we use the theory [15] in the
framework of classical electrodynamics.

However, in the recent papers [16, 17] the possibility of an appreciable influence of the
medium polarization on the spectral intensity in crystal undulators was shown. In [16] the
process was considered only in the dipole approximation. In [17] this process was studied for
a specific construction of the undulator and hence for specific trajectories of particles. In both
cases the radiation of the first harmonic was considered.

In this paper we want to extend the theory [15] to the case of a transparent medium. We
will study the pointed out process in the general case of a dielectric function ε(ω) (where ω

3 We, following the authors of [3, 11] (among the first publications in this field), cannot agree with some statements
in the article [10] which touch upon some historical aspects and assessments of the contributions of different authors
to this issue.
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is the frequency or energy of the emitted photon) which may be larger or smaller than 1. The
phenomena arising in different cases will be briefly discussed. In this paper we employ units
such that h̄ = c = 1.

Note that a large number of problems of radiation for charged particles moving in
various media were considered in [18]. Here, investigations of the radiation in medium-
filled undulators are also presented. However, these results concern mainly the total radiation
intensity. We also point out the paper [19] where the radiation for quasiperiodic motion was
studied for a wide range of undulator parameters.

2. Radiation energy losses of particles

The well-known formula [20, 21] for the radiation energy losses of a moving particle takes into
account the dielectric function of the medium. The analogous formula in [15] differs from the
above pointed one and was obtained for the vacuum. With the aim of extending the theory [15]
(in the framework of classical electrodynamics) to the case of a transparent medium we should
find its corresponding representation.

The Fourier transform of the vector potential for the electromagnetic field of a charged
particle moving in an isotropic transparent medium has the following form [21]:

A(ω, r) = e
exp [ikr ]

r

∫
v(t) exp{i[ωt − kr0(t)]} dt, (1)

where k = √
εωn, ε(ω) is the dielectric function (ε is a real positive value), n is the unit vector

in the direction of the photon motion, v, r0 are the particle velocity and its radius vector, r is
the distance from the point where the particle (with the charge e) is located at the moment of
time t . This relation is valid for large r .

Using this equation we find (analogously to [15]) the magnetic and electric (E) fields. The
radiated energy dE(n, ω) in an elementary solid angle d� and a frequency range ω,ω+ dω for
the whole time of the process is [22]

dE(n, ω) = √
ε|E(ω)|2(dω/4π2) d�r 2. (2)

Finally, we obtain

dE(n, ω) = e2√ε
∫ ∫

[(v(t1)v(t2)− 1/ε]

× exp{i[ω(t1 − t2)− k[r0(t1)− r0(t2)]]}ω
2 dω d�

(2π)2
dt1 dt2. (3)

This equation describes the differential radiation energy losses of the relativistic particle
moving in a transparent medium. At

√
ε = 1 equation (3) is the same as in [15].

The relation obtained here contains the peculiarities of radiation processes in a medium.
Let us calculate for demonstration purposes the radiation of the relativistic charged particle
moving in a transparent medium with a constant velocity (Cherenkov radiation). It is easy to
take the integrals over t1 and t2:

dE(n, ω) = e2√ε(v2 − 1/ε)Tmδ(ω − √
εωv cos θ)

ω2 dω d�

2π
, (4)

where Tm is the time of particle motion and θ is the polar angle, which is determined by the
pair of vectors v and n.

From here, we get the intensity of radiation per unit time
dE(ω)

Tm
= e2v(1 − 1/(εv2))ϑ(1 − 1/(εv2))ω dω, (5)

where ϑ(x) = 1 at x > 0 and ϑ(x) = 0 at x < 0.
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3. Intensity of radiation for quasiperiodic motion

Let us suggest that the particle performs a quasiperiodic motion with the period equal to T .
The periodicity of motion allows us to transform the integral in equation (3) into a Fourier

series. In accordance with [15] (conserving the notation of the variables) we can write
∫ ∞

−∞
vµ(t)eikx(t) dt = vTµ

∞∑
m=−∞

eimϕ0 = 2πvTµ
∑

n

δ(ϕ0 − 2πn), (6)

where

kx(t) = ωt − √
εωnr0(t), ϕ0 = ωT (1 − √

εnV), vTµ =
∫ T

0
vµ(t)eikx(t) dt . (7)

Here vµ = (1, v), (µ = 0–3) is the 4-vector of the particle velocity and V = (1/T )
∫ T

0 v(t) dt
is the mean particle velocity. One can find the mean velocity V and longitudinal velocity v‖:

V ≈ 1 − (1 + v2
⊥γ

2)/(2γ 2), v‖ ≈ 1 − (1 + v2
⊥γ

2)/(2γ 2), (8)

where v2
⊥ is the mean square of the transverse velocity v⊥. Substituting equation (6) into (3)

and calculating the intensity of radiation (per unit of time) one can get

dI = e2√εω
2 dω d�

4πT

∞∑
n=−∞

δ(ϕ0 − 2πn){2(|vT|2 − |vT0 |2/ε)}. (9)

One can see that in the general case the number n may be positive as well as negative (see, for
an explanation, for example [18, 19]).

Below we will find the relativistic relations with an accuracy up to γ−2 terms. Besides this,
we will obtain the intensity of radiation for any positive value of

√
ε = 1 + (√ε− 1) = 1 +χ .

Now we find the following relations:

f (t) = ωt − √
εnr0ω = −χωt + √

εω

[
θ2t

2
+ t

2γ 2
+

∫ t

0
v2

⊥ dt − n⊥x⊥
]
, (10)

ϕ0/T = ω

(
−χ + √

ε
(1 + v2

⊥γ
2)

2γ 2
+

√
εθ2

2

)
= nω0. (11)

Then we can find the spectral angular distribution of the radiation

dI = e2√εω
2 dω d�

(2π)2
1

ω0γ 2

∞∑
n=−∞

δ(ϕ0 − 2πn)

×
[{
(ε − 1)

ε
γ 2 − 1

}
|I0|2 + γ 2(|I⊥|2 − ReI ∗

0 I‖)
]
, (12)

I0 =
∫ 2π

0
ei f (ψ) dψ, I⊥ =

∫ 2π

0
v⊥(ψ)ei f (ψ) dψ, (13)

I‖ =
∫ 2π

0
v⊥2(ψ)ei f (ψ) dψ, ψ = ω0t, (14)

f (ψ) = nψ + ω
√
ε�(ψ)/(2ω0)− ω

√
εnx⊥(ψ), (15)

where

�(t) = ω0

∫ t

0
(v2

⊥(t
′)− v2

⊥) dt ′. (16)
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Here we use equations (10), (11) for finding the f (ψ) function. The photon energy and the
emission angle can be obtained from the following relations:

ω = 2γ 2nω0√
ε(1 + γ 2θ2 + ρ/2 − 2χγ 2/

√
ε)
, (17)

θ2 = 1

γ 2

(
2γ 2nω0√

εω
+ 2χγ 2

√
ε

− 1 − ρ/2

)
, (18)

where ρ = 2γ 2v2
⊥. Obviously, these relations are not independent and we write them for

convenience of further discussion.
Equations (12)–(15) describe the spectral angular distribution of the relativistic particle

radiation for the quasiperiodic motion in the transparent and isotropic medium. The trajectories
of the particle are represented in these equations in a general form. Equations (12)–(15)
allow us to calculate the spectral (integrated over angular variables) intensity, with the help
of numerical methods, for any particle motion. However, for some general enough cases the
integrals in equations (13)–(15) may be taken over angular variables as, for example, in the
important case of planar motion. For planar motion

nx⊥ = θ cos(ϕ)
∫ t

0
v⊥(t ′) dt ′, (19)

where ϕ is the azimuthal angle. After integration over θ we get

dIp = e2 ω dω dϕ

(2π)3γ 2

∞∑
n=−∞

ϑ(θ2)

({
(ε − 1)

ε
γ 2 − 1

}
I 2
0 + γ 2(I 2

x − I0 I‖)
)
. (20)

From here on, the term ϑ(θ2) in the sum means that the function ϑ (which was defined after
equation (5)) is equal to 0 or 1 in accordance with equation (18).

One can integrate this relation over ϕ and obtain the following equation for the spectral
intensity:

dI

dω
= − e2ω

(2πγ )2

∞∑
n=−∞

ϑ(θ2)

∫ π

−π
dt1 dt2

× J0

(
2
√
ε

∫ t1

t2

dψg(ψ)
√
ξ(n/

√
ε − ξ(1 + ρ/2 − 2χγ 2/

√
ε))

)

×
(

1 − (ε − 1)

ε
γ 2 + 1/2(g(t2)− g(t1))

2

)

× cos

(
(n − √

εξρ/2)(t1 − t2)+ √
εξ

∫ t1

t2

g2(ψ)dψ

)
, (21)

where g(ψ) = γ [vx(ψ)−〈vx 〉], vx = v⊥, 〈vx 〉 is the mean transverse velocity, ξ = ω/(2γ 2ω0)

and J0(x) is the Bessel function. Then we can get from equation (21) the following relation, in
the dipole approximation:

dI

dω
= e2ω

∞∑
n=−∞,
=0

ϑ(θ2)|xn|2{n2 − 2[ε − (ε − 1)γ 2]

× [ξ(n/√ε − ξ(1 + ρ/2 − 2χγ 2/
√
ε))]}, (22)

where xn = (1/(2π)
∫ π
−π x(ψ) exp(−inψ)dψ is the Fourier component of the value x(t) =

1/γ
∫ t

0 g(ψ)dψ (x(t)/ω0 is the transverse coordinate). This equation was obtained for the
two conditions 4εγ 2ξ 2θ2ρ � 1 and ρ

√
εξ � 1. The first condition is the requirement of

smallness of the argument in the Bessel function, and the second one means that the cosine in
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equation (21) is approximately equal to cos(n(t1 − t2)). In spite of the fact that ρ � 1 the value
2χγ 2 may be large and hence the argument of the Bessel function can also be large. Because of
this, the first condition is also necessary. At ε = 1 this equation has the form of the well-known
dipole approximation (when ρ � 1).

In the case when

2χγ 2/
√
ε > 1 + ρ/2 (23)

the following term (n = 0) should be added in equation (22):

dIn=0

dω
(ω) = e2ω

{(
ε − 1

ε
− 1 + ρ/2

γ 2

)
−

(
(ε − 1)γ 2

ε
− 1

)

× [2εξ 2(2χγ 2√ε − (1 + ρ/2))]X2

}
ϑ

(
ε − 1

ε
− 1 + ρ/2

γ 2

)
, (24)

where X2 is the mean square of the function x(t). It should be noted that equations (23)
and (24) contain an apparent contradiction, because they predict different, although very close
values for the threshold of Cherenkov radiation. We explain this difference via the accuracy
(up to γ−2 terms) of our calculations.

The equations (21)–(24) obtained here are sufficient for the calculation of the spectral
intensity of the relativistic particle for planar quasiperiodic motion of the general kind in
transparent media. In these equations the knowledge of the function ε is required for every
computed photon energy. In particular, the process of calculation (at fixed ω) consists in testing
the relation ϑ(θ2) for every n (in the interval −∞,+∞). For such a test, equation (18) should
be used. However, it is easy to see that for the condition 2χγ 2/

√
ε < 1 + ρ/2 only positive

numbers n are possible.

4. Examples of calculations

In this section we point out the basic peculiarities of the radiation for quasiperiodic particle
motion in the medium. For the detailed description of this process knowledge of the explicit
form of the dielectric function is important. The aim of our consideration is the application
of the equations obtained in the previous section to the calculations of radiation processes in a
transparent medium. Note that many peculiarities of similar processes were discussed in earlier
papers [16–19, 24, 25, 30–32].

In the general case the relations obtained here for radiation in a medium are valid, under the
condition of a small influence of this medium on the quasiperiodic particle motion. Different
processes (multiple scattering, ionization energy losses and others) can modify the motion of
particles and they should be investigated separately. Various examples of consideration of this
problem can be found in the literature [15, 21, 23]. One can assert that, in the case of small
enough values of |ε − 1|, the influence of the medium on the motion will be insignificant, but
in every specific case such a possibility should be studied. Thus, we think that in most, if not
all, of the practically important cases one has |ε − 1| � 1.

It is a well-known fact that the transparent medium is an idealized substance. We assume
that a good model of the transparent medium is a medium in which ε′′ � |ε − 1|, where ε′′ is
the imaginary part of the dielectric function.

In the general case the number of harmonics n which may be radiated lies in the range
(−∞,∞). In the vacuum n � 1, always. However, under the condition 2χγ 2/

√
ε < 1 + ρ/2

all the numbers obtained are positive. It is easy to see from equations (23) and (24) that
the condition 2χγ 2/

√
ε = 1 + ρ/2 is practically equal to the threshold of the Cherenkov

radiation. From equation (24) it follows that, with decreasing of the amplitude of the transverse
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motion (ρ → 0), this equation describes the intensity of the Cherenkov radiation. Besides
this, dI (n = 0)/ dω = 0 at 2χγ 2/

√
ε = 1. For ρ → 0 all the remaining terms (n 
= 0) in

equations (21) and (22) are set to zero.

Let us recall that ρ = 2γ 2v2
⊥ and hence we can find the threshold value of the Lorentz

factor for Cherenkov radiation in the general case:

γ 2
th = 1

2χ/
√
ε − v2

⊥
. (25)

From here, we see that γth is increased with increase of the mean square transverse velocity.
We also see that, for allowing the possibility of Cherenkov radiation, the realization of the

condition v2
⊥ < 2χ/

√
ε is necessary.

Let us consider equations (17) and (18). We see that for Cherenkov radiation (n = 0)

θ2
Ch = 1

γ 2

(
2χγ 2

√
ε

− 1 − ρ/2

)
. (26)

This result shows that the angle of Cherenkov radiation also depends on the ρ value.
Now we consider the case of the usual amorphous media. At high enough frequencies of

photons the dielectric function has the following simple form:

ε = 1 − �2
p

ω2
(27)

where �2
p = 4πnee2/me, ne is the electron density and me is the electron mass. Substituting

this relation in equation (27) we obtain approximately (under the condition �p/ω � 1) for
radiation of the nth harmonic:

(1 + ρ/2)ω2 − 2γ 2nω0ω + γ 2�2
p � 0. (28)

This means that radiation (of the nth harmonic) is possible when γ nω0 > �p
√

1 + ρ/2 and
the resolved photon energies lie in the interval ω− � ω � ω+, where

ω± =
γ 2nω0 ±

√
γ 4n2ω2

0 −�2
pγ

2(1 + ρ/2)

1 + ρ/2
. (29)

The threshold value of the Lorentz factor for the harmonic number n is equal to

γth = �p√
n2ω2

0 − v2
⊥�2

p

≈ �p

ω0

√
n2 − a2�2

p/2
, (30)

where a is the amplitude of the particle deflection. It is obvious that for radiation of the nth
harmonic, a�p <

√
2n. These results are in agreement with those in [16, 17] (for the first

harmonic) and [31].
It is well known that in usual media the dielectric function is smaller than 1 at high enough

photon energies. Thus, Cherenkov undulator radiation is possible mainly at photon energies
�10 eV. Besides this, there exists the possibility of observing this radiation at the photoeffect
absorption edges [24, 25]. In this case the energy of emitted photons has a value of �1 keV.

In accordance with quantum electrodynamics [26] the electromagnetic vacuum represents
the medium in which the dielectric function may be larger than 1. However, for electric fields
which may be obtained in laboratories (<106 G) the value ε − 1 is very small and the particles
with Lorentz factors larger than 1010 can feel this value. In the paper [27] the Cherenkov
radiation in silicon single crystals (i.e. an analogue of the quantum undulator) was predicted for
particles with γ > 108. However, our considerations allow us to predict the specific radiation
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Figure 1. Intensity of radiation in a silicon crystal undulator with the period and amplitude equal to
0.05 cm and 100 Å, respectively. The energy of the positron beam is 10 GeV. Thin and thick curves
correspond to radiation in vacuum and media, respectively. The parameter ρ has the value ρ = 6.4.

of negative harmonics in single crystals. A similar effect is also applied to the propagation of
high energy charged particles in power laser waves [28, 29].

Below we present some examples of calculations of the radiation of relativistic particles
for quasiperiodic motion in the medium. These calculations were done with the use of
equation (21) assuming that the particle motion in the transverse plane is harmonic: v⊥ =
aω0 cosω0t .

Figures 1 and 2 illustrate the influence of media on the radiation in the crystal
undulator [12–14]. In the silicon single crystal at photon energies larger than 10 keV the
dielectric function is smaller than 1. The disappearance of the first harmonic in such media
is shown in figure 1. Figure 2 illustrates the influence of the medium in the case when the first
harmonic is partially radiated. Notice that these figures were produced only for illustration and
do not take into account many peculiarities of the real process (such as the influence of the
channelling motion).

Let us consider the particle radiation in the undulator with the dielectric function larger
than 1. In practice it may be a gas-filled undulator. Let the energy of particles moving in
the undulator satisfy the condition for Cherenkov radiation (see equation (26)). Then the
connection between the angle of radiation of the nth harmonic and the angle of the Cherenkov
radiation follows from equation (18):

θ2(n) = θ2
Ch + 2nω0√

εω
. (31)

From here, we get that the condition of radiation of the nth harmonic is

n > −θ
2
Ch

√
εω

2ω0
. (32)

Obviously all the positive n satisfy this condition and negative n satisfy equation (26) starting
from some number nmin.
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Figure 2. The same as figure 1, but with the amplitude a = 55 Å and ρ = 1.83.

Let us imagine a medium with a constant dielectric function (ε > 1) for all photon
energies. From our consideration (see equations (25), (26), (31), (32) and the condition for
the Cherenkov radiation to take place) it follows that in this medium the positive harmonic is
radiated at all photon energies. There is a threshold for negative harmonics in this medium.
In this case the radiation of these harmonics takes place at all above-threshold energies,
and with the increase of the photon energy the number of radiated harmonics also grows.
In particular, the frequency ω0 determines only the threshold energy of radiated harmonics.
This consideration shows that the character of the radiation (under the pointed conditions) is
appreciably different to in the usual undulator.

For illustration of this case we carry out the calculation of the propagation of the beam with
the Lorentz factor equal to 400 in the gas-filled undulator with a period equal to 10 cm. We also
assume the value χ = 10−4 at photon energies lower than 1 eV, and χ = 0 at energies higher
than 1 eV. This value is several times smaller than in many gases at atmospheric pressure. The
energy range of the photons corresponds approximately to visible light. Figure 3 illustrates the
spectral intensity of the radiation at ρ = 0.39. In this case harmonics with the numbers −1, 0,
1 are predominantly radiated. We see that at small energies the radiation of the zeroth harmonic
dominates (in accordance with equation (24)). The total intensity grows proportionally to the
photon energy and hence is equal to the intensity of Cherenkov radiation in any medium, which
is characterized by the corresponding ε value.

Figure 4 illustrates the behaviour of the intensity of the radiation, depending on the ρ
parameter. One can see that at ρ ≈ 62 the intensities of all the negative and zeroth harmonics
disappear. The structure in curves at large enough ρ reflects the disappearance of the negative
harmonics. The peak at ρ ≈ 38 corresponds to the harmonic with n = −3. At the fixed Lorentz
factor one has a threshold value ρth = 4χγ 2/

√
ε − 2. Figure 5 shows the angle of radiation of

harmonics and the intensity of radiation at the fixed photon energy and ρ parameter. From our
consideration it follows, firstly, that the undulator distributes the Cherenkov radiation over its
harmonics and, secondly, that the intensity of radiation in such a medium is much higher than
that in the vacuum.
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Figure 3. Intensity of radiation in a gas-filled undulator as a function of the photon energy. Curves
−1, 0, 1 correspond to radiated harmonics with n = −1, 0, 1. The thick curve is the total
intensity. The dotted curve is the intensity in vacuum enlarged 500 times (with the values of the
other parameters remaining unchanged).

Figure 4. Intensity of radiation in a gas-filled undulator as a function of the ρ parameter. Curve 0
corresponds to the zeroth harmonic, curve 1 (−1) corresponds to the sum of intensities of all the
positive (negative) harmonics. The thick curve is the total intensity. The energy of radiated photons
is equal to 1 eV.

Our results for radiation in media with ε < 1 are in agreement with the main conclusions
of the papers [16, 17].

The Cherenkov radiation for quasiperiodic motion was studied in [19]. In this paper
the radiation process was considered for specific motion and different undulator parameters.
However, the particular calculations and illustrations for the case ε > 1 and ρ > 1 are absent.
The Cherenkov radiation was investigated in more detail at small undulator parameters. The
conclusion in this paper, i.e. that the undulator radiation is negligible in comparison with the
Cherenkov one, is in agreement with our results at ρ < 1.
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Figure 5. Radiation of the harmonics in the gas-filled undulator. The angle θ is along the abscissa
axis and the intensity of radiation of the nth harmonic is along the ordinate axis. The numbers above
intercepts, showing the intensity, are the numbers of the harmonics. The intensities of the sixth and
seventh harmonics are invisible (due to their small values). The energy of radiated photons is equal
to 1 eV. The angle θ for the zeroth harmonic is independent of the photon energy and for other
harmonics these angles are changed in accordance with equation (31). The parameter ρ takes the
value ρ = 3.8.

5. Conclusions

In this paper we considered the radiation process in a transparent medium. We obtained (on the
basis of such a relation for vacuum [15]) the general relation for radiation energy losses of the
relativistic particle. With the help of this formula we extended the theory [15] of the radiation
for quasiperiodic motion to the case of a transparent medium. We obtained the relations
describing the spectral intensity for the case of planar motion, which may be prescribed by any
analytical equation. The various possibilities for radiation in transparent media were discussed.
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